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We have built a world of rectilinearity—the rooms we inhabit, the 
skyscrapers we work in, the gridlike arrangements of our streets, 
the freeways we cruise on our daily commute speak to us in straight 
lines. We have learned to play by Euclidean rules because two 
thousand years of geometric training have engraved the grid in our 
minds. But in the early nineteenth century mathematicians became 
aware of a space in which lines cavorted in aberrant formations, 
suggesting the existence of a new geometry.
	 To all at the time hyperbolic space seemed pathological, for it 
contradicted the axioms of Euclid, overthrowing millennia of math-
ematical wisdom and offending common sense. “For God’s sake, 
please give it up. Fear it no less than the sensual passions, because it, 
too, may take up all your time and deprive you of your health, peace 
of mind and happiness in life,” wrote Farkas (Wolfgang) Bolyai to 
his son János; both were mathematicians at the forefront of investi-
gating this bizarre spatial construct. Carl Friedrich Gauss, the prince 
of mathematicians, kept his studies private: “I fear the howl of the 
Boetians, if I make my ideas known,” he confided to a friend.
	 The apprehension instilled in mathematicians by the revela-
tion of hyperbolic space heralded the beginning of a new era in 
the discipline’s history and a commensurate revolution in thinking 
about what mathematics means and its relationship to the world of 
objects. The distant howlings Gauss intuited were the cries of pain 
that would soon erupt as mathematicians tore their subject from its 
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anchoring in “real” physical things and set it free as an epistemic 
bubble untethered from materialist contingencies. 
	 The Greeks, of course, had laid down the original schema: 
Pythagoras, Plato, and Aristotle all agreed that mathematics was 
the study of quantity and form. Quantity is made known to us 
through the act of counting—one, two, three, four. Its elements, the 
numbers, were (to the Greeks) the Platonic ideals that stood behind 
the material manifestations of, say, four oranges or four chairs. 
While things decay, the number itself was that which endured, the 
incorruptible, immutable core that in Pythagorean philosophy tran-
scended its every embodiment: four flowers will wilt, four men will 
die, four mountains will eventually be worn away, but Four, the 
ideal, is forever. 
	 Form is what we study through the discipline of geometry; its 
elements are points and lines, triangles, squares, circles, and so on. 
Again the Greeks believed that this realm of ideals was mediated 
by concrete things: the flat plane of a tabletop approximated the 
Euclidean plane, the surface of the earth approximated a sphere, a 
circle could be approximated with a compass. To the Greek way of 
thinking, mathematical ideals such as numbers and circles existed 
in a transcendent realm above and beyond the material plane. Such 
ideal constructs served as the models for the imperfect realm of 
objects, which strive as best they can against the contingencies of 
substance to realize the perfections with which they are imprinted. 
Thus while ideals literally in-form objects, one of the functions 
of objects in the Pythagorean/Platonic tradition was to guide our 
thoughts upward to the realm of ideals. 
	 Modern physicists continue this philosophical thread when 
they propose that mathematics is the language in which nature’s 
laws are written and that the study of such laws, along with the 
things that embody them, will lead us, in Stephen Hawking’s famous 
phrase, toward “the mind of God.” 
	 But what happens if the correspondence between things and 
ideals is broken? What if ideals have a life of their own?
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	 The study of number hinted first at this unsettling possibility. 
What are we to make, for instance, of the perfectly legitimate math-
ematical operation “one minus one”? For hundreds of years European 
mathematicians resisted the notion of “zero,” an idea they had encoun-
terd in Indian mathematics. How can we signify nothing, which, by 
definition, doesn’t exist? Negative numbers compounded the problem, 
for one cannot have -4 oranges. A preoccupation with thingness mili-
tates against extending the number system, yet someone in debt may 
well be worth -4 dollars. Ultimately it was the spread of double-entry 
bookkeeping in the twelfth and thirteenth centuries that cemented zero 
and the negatives into the Western mathematical scheme. 
	 With the door thus opened, numbers soon revealed properties 
undreamed of by the bean counters. Imaginary numbers (the square 
roots of the negatives) and complex numbers (compounds of the reals 
and imaginaries) foisted themselves on the bewildered consciousness 
of late Renaissance minds. What possible meaning could be attached 
to “the square root of minus one”? The very name “imaginary” testi-
fied to the bamboozlement mathematicians felt; it was as if they were 
dealing with dream creatures, the formal equivalent of unicorns.
	 Hyperbolic geometry was the first glimpse that similar conun-
drums would occur in the realm of form. Here we begin with par-
allel lines: what does it mean to say that two lines are parallel? In 
Euclidean geometry the term connotes two lines that never meet. 
Take a line and a point outside this line: how many other lines can 
you draw through the point that never meet the original line (Fig. 
22)? The answer is one. This indeed may serve as a definition of 
the Euclidean plane, for here the proposition holds for all lines. 
But another geometric possibility inheres in the form of the sphere. 
Consider the surface of the earth; all lines of longitude are parallel 
at the equator, yet all meet at the North and South poles. In spheri-
cal geometry there is no such thing as straight lines that never meet. 
Here all parallels converge.
	 Parallelism is thus a more complex concept than might 
first be supposed, and in the nineteenth century mathematicians 



[Fig. 22]   Parallel lines in Euclidean space

[Fig. 23]   Parallel lines in hyperbolic space
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realized that it encompassed a third, bizarre possibility. From a 
purely formal perspective it is quite legitimate to propose a geo-
metric space in which an infinite number of parallel lines may pass 
through a single point yet never intersect with an original line  
(Fig. 23). In homage to this excess, mathematicians named the 
resulting construct “hyperbolic space.” Here the ideal concept of 
parallel lines became uncoupled from any apparent referent in 
the material realm. Mathematicians were bamboozled, astounded, 
and quite literally appalled.
	 We know Euclidean space, or we think we do, for we are 
constantly making grids and graphs and rectilinear rooms, and we 
know the surface of a sphere, for we live on one. But how can we 
make sense of hyperbolic geometry? One way of understanding this 
is through the concept of convergence: where a sphere represents 
a geometry in which parallel lines converge, on a hyperbolic plane 
they diverge. Another approach, as Gauss perceived, is to think in 
terms of curvature: a sphere is a space with positive curvature, and 
a Euclidean plane has zero curvature; the hyperbolic plane is simply 
a space with negative curvature. It is the geometric equivalent of a 
negative number. Plus, minus, and zero may thus be rendered into 
geometric terms, each identifying a different set of spatial relation-
ships. In a very powerful sense form and quantity themselves con-
verge. Yet the price of this almost-mystical abstraction is a divorcing 
of mathematics from the “sensible” world of objects 
	 Objects had led to ideals, but now ideals had taken over, for 
no one in the nineteenth century imagined that hyperbolic geom-
etry might be realized in actual physical things. Practically speak-
ing, that seemed absurd; the Boetians were howling at the gates. 
The one potential exception that impinged itself on nineteenth-
century consciousness was the structure of cosmological space, and 
Gauss speculated that our universe may have hyperbolic form. The 
geometry of space on the universal scale still remains an open ques-
tion in cosmology and one that space-based telescopes such as the 
Hubble are currently striving to answer. Most evidence points to a 
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Euclidean universe, yet there is intriguing data to suggest that we 
may live in a hyperbolic world. 
	 The relationship between mathematical ideals and material 
facts has itself been an open question since at least the seventeeth 
century, when René Descartes presciently asked, Is all of mathemat-
ics realized in the realm of objects? Descartes’s answer was yes. Most 
mathematicians today might hesitate to respond so affirmatively, how-
ever, for in the latter half of the nineteenth century their understanding 
of the discipline underwent a radical transformation due to discoveries 
about such concepts as hyperbolic space and imaginary numbers. 
	 By the 1860s a new philosophy had begun to emerge that 
would liberate mathematics entirely from its material moorings. 
According to Augustus De Morgan, mathematical concepts need 
not refer to anything physically existing. In De Morgan’s terms, 
mathematics was purely a “science of symbols” whose only require-
ment was that its logic be self-consistent. In short, mathematics did 
not intrinsically reference anything. Its referential quality, when that 
existed, was outside the domain of mathematics per se and of no 
concern to practicing mathematicians. 
	 To mathematicians of the past 150 years, 4 and -4 and 4i are 
equally valid numbers; it matters not if they have material instan-
tiations. Much of the project of mathematics over the past century 
and a half has been a steady process of abstraction as more and 
more branches have been transformed into purely symbolic terms. 
Thus the study of numbers gave rise to the discipline of modern 
algebra, with its dazzling taxonomy of groups and rings and fields, 
and the thousands of species of these genera that constitute a sort 
of formalist tree of life. Meanwhile the study of form begat non-
Euclidean geometry, finite geometry, and Riemannian geometry, 
plus the field of topology (where a coffee cup and a doughnut are 
one and the same).
	 But in what we might call a return of the repressed, the 
object-sphere uncannily has bubbled back as many of the most 
seemingly abstruse mathematical concepts have turned out to have  
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real material analogs. Imaginary numbers, for instance, play a 
central role in the design of electrical circuits: cell phones, radio 
receivers, and WiFi stations must each be tuned to electromagnetic 
frequencies via circuit elements that tweak the imaginary part of 
the current and voltage. Mathematicians may have been horrified 
by hyperbolic geometry, but nature grasped its potential in the 
Ordovician age: corals, kelps, sponges, nudibranchs, and sea slugs 
all exhibit hyperbolic anatomical features. For filter-feeding organ-
isms, hyperbolic surfaces offer an ideal solution to the problem of 
lunch by maximizing surface area in a given volume.
	 Though mathematicians had long believed that it wasn’t 
possible to make physical models of hyperbolic space, in 1997 a 
Latvian professor named Daina Taimina realized how to construct 
this geometric ideal using the craft of crochet. At the Institute For 
Figuring, we have explored this technique over the past four years, 
elaborating on Dr. Taimina’s methods to articulate a new ecology 
of forms (Fig. 24). 
	 Crocheted models of hyperbolic space, hooked together from 
animal hairs and vegetable fibers, are a material embodiment of 
a symbolic ideal long thought to be logically untenable. Soft and 
pliable, fluffy and hairy, made by female hands, these models call 
to mind the Red Queen’s advice to Alice that with enough practice 
she too could develop the skill of believing “six impossible things 
before breakfast.” Alice’s creator, Charles Dodgson, aka Lewis 
Carroll, was himself a younger contemporary of De Morgan’s who 
also worked in the emerging field of mathematical logic. Through 
Carroll’s pen the howl of the Boetians was transformed into a trip 
through Wonderland, the theoreticians’ cries of pain commuted into 
a smirk that lingered in the air like the grin of a Cheshire Cat.
	 The models crocheted using these techniques not only mate-
rialize but also temporalize hyperbolic space, for these works are 
brought into being through the iterative act of repeating a simple 
sequence of steps again and again and again. Each hyperbolic model 
advances by increasing crochet stitches according to a primitive 
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[Fig. 24]   The Institute For Figuring; various models of hyperbolic space, 2007–2008; cotton,  
polyester yarn; dimensions variable



	 Margaret Wertheim and Christine Wertheim	 155

algorithm: make “n” stitches, then increase by one; repeat ad infi-
nitum (or until you’ve had enough). 
	 Generated through time-based labor, these forms are almost 
impossible to model on computers or to re-create through mechani-
cal processes: while knitting has long been automated, there is no 
machine that can crochet. Moreover, hyperbolic structures cannot be 
modeled mathematically by analytic equations—in short, they are 
not subject to the interpretive techniques of calculus. The only way to 
know the final form of an iterative structure is to literally play it out. 
Such process-driven actualization also underlies images of fractals, 
which themselves constitute a further revolution in geometry: these 
are structures that possess a fractional dimension, another seem-
ingly paradoxical concept. In order to know the Mandelbrot Set and 
other fractal structures, we have no choice but to engage with them 
temporally, to let a computer iterate their underlying primitives over 
and over again. Here too the element of time overcomes an ideal-
ized limitation (the concept of a “dimension”), bringing into being 
configurations previously deemed absurd or even impossible.
	 With fractals the temporal factor is played out by comput-
ers; with crochet models it must be provided by personal human 
commitment. This effort—intimate in scale, domestic in setting, 
usually female in practice—literally instantiates a hitherto purely 
imagined form. The body becomes the conduit for the realization 
of the mind’s most abstract flight; matter becomes the medium for 
the intellect’s mathematical message. Bridging the division between 
time and space, theory and practice, matter and process, a woman’s 
hands convert the thread of a lamb into a spatial conundrum. Here 
object and ideal converge.


